
Modern Methods, Classical Constraints

Anonymous author

Abstract

This paper proposes both discriminative and generative model architectures
that are designed to be parameter efficient, whilst requiring few optimisa-
tion steps to train. In particular, both architectures employ both depth-
wise separable convolutions and transformer (encoder) layers as a means of
maintaining expressivity at a lower computational cost. Convergence of the
discriminator is expedited using a cyclical learning rate, whilst the conver-
gence of the generator is optimised with a non-linear schedule. Experiments
are performed on the CIFAR-100 dataset.

1 The Discriminative Model

1.1 The Discriminative Modelling Problem

Discriminative modeling focuses on learning the conditional probability P (Y |X), where Y
represents the target labels, and X represents the input features. If d(x) = P (Y |X = x), the
task of our deep neural network f(x; θ) is to learn parameters θ such that f(x; θ) = d(x).
In the following section we attempt to define an f(x; θ) that attempts to learn this true
distribution, but with the additional constraints that |θ| < 100, 000 and where we use no
more than 10,000 gradient update steps to train this model.

1.2 Methodology

1.2.1 Model Architecture

Figure 1: Discriminator Architecture

We employ depthwise separable convolu-
tions [41] as a parameter-efficient means of
extracting and refining low-level features.
Subsequently, these features undergo fur-
ther processing through a series of trans-
former encoder layers, whose weights are
tied [42, 21, 7]. Finally, classification logits
are obtained through a pair of linear trans-
formations.

Each convolutional layer is succeeded by a
batch normalisation layer [17] and a sigmoid
linear unit activation function [10, 26]. We
use 2x2 max pooling to reduce spatial di-
mensions after the first two layers.

The Transformer layers deviate slightly
from the original formulation toward a
more modern one [40] that replaces the
Layer Normalisation [1] with Root Mean
Square Layer Normalisation [44], removes
the Dropout layers [38], and uses a Gated
Sigmoid Linear Unit activation function [6],
in the manner proposed in [32].

See Figure 1 for more details.

1



1.2.2 Discussion

Existing architectures optimised for parameter efficiency exist [14, 15, 13], and could feasibly
be directly scaled down to meet our specific requirements. In the spirit of exploration, we
opt for a subtly different approach.

In line with the MobileNet family of models [13, 14, 31], we select depthwise separable
convolutions over standard convolutions for low-level feature processing since, by effectively
factorising the convolution operation, they require fewer parameters to perform an operation
of “comparable quality” to that of a standard convolution.

We choose to refine these features further using four shared-weight transformer encoder
layers. Transformers, like convolutions, decouple spatial and feature processing. The achieve
this by convolving an MLP with the features from each spatial position independently. In our
case this allows for a 64x decrease in the number of parameters required, in comparison with
a standard MLP. This is in addition to their primary feature, the esteemed self-attention
mechanism which introduces dynamic, global, communication that enhances expressivity.
Weight sharing increases expressivity further, without increasing parameter count.

The imposed parameter and optimisation step constraints resulted in (relatively) short train-
ing times, which enabled us to efficiently iterate using the scientific method. We tested nu-
merous architecture variants such as, what transformer variant to use (LLAMA vs GPT2),
which activation function (GeLU vs ReLU vs SiLU), how many transformer layers (0-6),
whether to use shared weights, what type of positional encoding (Fourier vs learned), and
which spatial reduction technique to use (max pool vs 4,2,1).

In the final network we employ various forms of regularisation beyond the normalisation
layers discussed previously. Concretely, we use L2 regularisation, label smoothing, gradient
clipping, and data augmentation with RandAugment [5]. We trained the network using
ADAMW [18, 22] with a OneCycleLR learning rate scheduler [34], to speed up convergence.
We performed a learning rate range test [33] to find optimal values for this scheduler. We
trained with a batch size of 1024, primarily as a proxy for increasing the number of training
epochs. The optimal hyperparameter values can be found in the provided implementation.

1.3 Results

Figure 2: Train & Validation Accuracy

The network has 99, 546 parameters.

The accuracy on the training set was 65.1%
and the accuracy on the validation set
was 62.0% (train loss: 1.931, val loss:
1.419, train acc: 0.651±0.014, val acc:
0.620±0.011).

1.4 Limitations

The model has high bias and low variance.
The validation accuracy is poor. The vali-
dation accuracy is also quite volatile, as we
can see from the training graph in Figure 2.

We observed a bias-variance trade-off, as in
classical statistics, when trying to regularise
the model. Dramatic overparameterisation
and much longer training times would allow us to pass the interpolation threshold and
leverage the deep double descent phenomenon [23] to obtain both low bias and low variance.
We could then smooth the training graph by using a lower learning rate.

Finally, these results say little about the real-world performance of our models, due to the
probable overfitting of our hyperparameters on the validation set, and the absence of a test
set. Reserving a portion of the training set as a separate test sample is not suitable, as these
samples would not represent out-of-distribution data relative to the training distribution.

2



2 The Generative Model

2.1 Strategy

Among the various classes of deep generative model [27, 9, 25, 27, 8], Generative Adversarial
Networks (GANs) and Denoising Diffusion Probabilistic Models (DDPMs) [11, 36] have
recently dominated in producing high-quality samples [16]. The primary limitation of GANs
is their tendency to mode collapse. In contrast, DDPMs, a subset of Energy Based Models,
generate more diverse outputs but require longer to train and sample from.

Torn between a affinity toward to the elegance of DDPMs, and an objective assessment that
GANs would perform better under our particular constraints (<1M parameters & ≤ 50, 000
optimization steps), we decided to experiment with both.

Our conditional GAN used depthwise separable convolutions with a classic DCGAN design,
and was enhanced with techniques like spectral normalisation and label smoothing. Ulti-
mately however, with extensive tuning, our DDPM was able to achieve a comparable FID
score to our GAN and is therefore the model that is officially presented below.

2.2 Methodology

We omit a routine recap of the denoising diffusion process for the sake of brevity. Our
particular DDPM is a continuous-time model [2, 36, 20, 37], where we use a variance pre-
serving forward process that is parameterised by the log signal-to-noise ratio (log-SNR):

λt = log(
α2

t

σ2
t
), where αt and σt are specified by a particular noise schedule. A noise schedule

is a monotonically decreasing invertible function that maps the time variable t ∈ [0, 1] to
the corresponding log-SNR λt. In particular we use a cosine schedule, inspired its discrete
counterpart from [24]. We sample uniformly distributed timesteps t using a low discrepancy
quasi-random sequence engine (Sobol engine).

We train with a velocity objective [30], a reparameterisation of the standard ϵ-prediction
objective [11], as shown in (3):

Let v and xnoised be:

v ≡ αtϵ− σtx (1)

xnoised ≡ αtx+ σtϵ (2)

where ϵ ∼ N (0, I) is the noise term (we do not learn covariances), and x is the real data.

Given the model’s prediction of the velocity v̂ = vθ(xnoised, λt, c), we define the loss as:

Lθ = E
[
∥v − v̂∥22

]
= E

[
(eλ + 1)∥x− x̂∥22

]
= E

[
(eλ − 1)∥ϵ− ϵ̂∥22

]
(3)

We employ classifier-free guidance [12] to control the trade-off between the sample fidelity
and mode coverage of our model post training. In particular, given a dataset of observations
x drawn from q(x), we train an unconditional generative model with the task of estimating
the marginal probability p(x), as well as a conditional model that learns to estimate the
conditional densities p(x|c), given class labels c. Both models are parameterised by the same
network. At sampling time, we are then able to control this fidelity-coverage balance by
linearly interpolating away from the unconditional velocity estimate, toward the conditional
one, using a weighting factor w, as in (4). In our implementation we have w = 3, which was
determined experimentally.

ṽθ(xnoised, λt, c) = (1 + w)vθ(xnoised, λt, c)− wvθ(xnoised, λt,∅) (4)

vθ is a modernised conditional U-Net [28] augmented with self-attention [42]. We replace the
majority of the standard convolutional layers with depthwise separable convolutions. We
inject timestep embeddings (sinusoidal) and class embeddings (learned) via an addition at
two points in the network. We smooth the trajectory of the model updates using the popular
Exponential Moving Average method as in [11, 24]. We omit an architecture diagram since
the architecture is relatively standard and since the implementation code is provided.

3



2.3 Discussion

The code for our model was adapted from an implementation by Katherine Crowson [3].
We refactored and extended this code to suit our purposes. Specifically, we replaced the
provided network architecture with our own design, added classifier-free guidance, two non-
linear schedules, dynamic clipping in the x-space during sampling [29], and a function to
perform spherical latent interpolations [39].

Our initial implementation of vθ generated samples containing regular wave-like artefacts.
We hypothesised that the depthwise separable convolutions, due to their nature of processing
input channels separately before combining them, meant that the network was unable to
properly assimilate the timestep and class embeddings into the overall representation. We
resolved this by replacing the depthwise separable convolutions after each timestep injection,
with regular convolutions.

[20] showed that the Evidence Lower Bound Objective (ELBO) is invariant to the choice
of noise schedule (except for it’s endpoints). However, [19] showed that the choice of noise
schedule does directly influence the variance of Monte Carlo estimator for the loss that is used
during training. Consequently they showed that lowering the variance of this loss estimator
often significantly speeds up optimisation. It is for this reason that we sample timesteps
using a Sobol engine during training, and implemented two additional noise schedules to
experiment with. In particular, we implemented a cosine schedule and a spliced cosine-linear
hybrid [4], alongside the linear schedule already provided.

We use DDPM-style stochastic sampling to generate our primary samples but use DDIM [35]
style deterministic sampling to generate our interpolations. This is because the stochastic
generative process of DDPMs causes the generations to stray unpredictably from the initial
noise, which is of course not the case for deterministic sampling. In our implementation we
spherically interpolate between pairs of both latents and class embeddings.

2.4 Results

Our 982,371 parameter model, trained for 50,000 steps, achieves an FID of 31.1.

Figure 3: Random samples (left), latent interpolations (middle), nearest neighbours (right).

2.5 Limitations

Despite reasonable shapes and textures, most images lack realistic details. Certain batches
contain similar samples which indicates slight mode collapse. Our interpolation technique,
being derived from first principles, is rudimentary. A more sophisticated technique like
perceptually uniform sampling [43], or interpolation at every noise level, would likely produce
more realistic midpoints. Finally, analysis of the nearest neighbors of our samples reveals
that the model is quite heavily mimicking the training set.

4



References

[1] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E. Hinton. Layer Normalization. 2016.
arXiv: 1607.06450 [stat.ML].

[2] Nanxin Chen et al. WaveGrad: Estimating Gradients for Waveform Generation. 2020.
arXiv: 2009.00713 [eess.AS].

[3] Katherine Crowson. Trains a diffusion model on CIFAR-10. Online. 2024. url: https:
//colab.research.google.com/drive/1IJkrrV-D7boSCLVKhi7t5docRYqORtm3.

[4] Katherine Crowson. v-diffusion. Online. 2024. url: https : / / github . com /
crowsonkb/v-diffusion-pytorch/blob/master/diffusion/utils.py.

[5] Ekin D. Cubuk et al. RandAugment: Practical automated data augmentation with a
reduced search space. 2019. arXiv: 1909.13719 [cs.CV].

[6] Yann N. Dauphin et al. Language Modeling with Gated Convolutional Networks. 2017.
arXiv: 1612.08083 [cs.CL].

[7] Mostafa Dehghani et al. Universal Transformers. 2019. arXiv: 1807.03819 [cs.CL].

[8] Yilun Du and Igor Mordatch. Implicit Generation and Generalization in Energy-Based
Models. 2020. arXiv: 1903.08689 [cs.LG].

[9] Ian J. Goodfellow et al. Generative Adversarial Networks. 2014. arXiv: 1406.2661
[stat.ML].

[10] Dan Hendrycks and Kevin Gimpel. Gaussian Error Linear Units (GELUs). 2023.
arXiv: 1606.08415 [cs.LG].

[11] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising Diffusion Probabilistic Models.
2020. arXiv: 2006.11239 [cs.LG].

[12] Jonathan Ho and Tim Salimans. Classifier-Free Diffusion Guidance. 2022. arXiv:
2207.12598 [cs.LG].

[13] Andrew Howard et al. Searching for MobileNetV3. 2019. arXiv: 1905.02244 [cs.CV].

[14] Andrew G. Howard et al. MobileNets: Efficient Convolutional Neural Networks for
Mobile Vision Applications. 2017. arXiv: 1704.04861 [cs.CV].

[15] Forrest N. Iandola et al. SqueezeNet: AlexNet-level accuracy with 50x fewer parameters
and ¡0.5MB model size. 2016. arXiv: 1602.07360 [cs.CV].

[16] ImageNet 64x64 Benchmark (Image Generation). Papers With Code, 2024. url:
https://paperswithcode.com/sota/image-generation-on-imagenet-64x64.

[17] Sergey Ioffe and Christian Szegedy. Batch Normalization: Accelerating Deep Network
Training by Reducing Internal Covariate Shift. 2015. arXiv: 1502.03167 [cs.LG].

[18] Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimization.
2017. arXiv: 1412.6980 [cs.LG].

[19] Diederik P. Kingma and Ruiqi Gao. Understanding Diffusion Objectives as the ELBO
with Simple Data Augmentation. 2023. arXiv: 2303.00848 [cs.LG].

[20] Diederik P. Kingma et al. Variational Diffusion Models. 2023. arXiv: 2107.00630
[cs.LG].

[21] Zhenzhong Lan et al. ALBERT: A Lite BERT for Self-supervised Learning of Language
Representations. 2020. arXiv: 1909.11942 [cs.CL].

[22] Ilya Loshchilov and Frank Hutter. Decoupled Weight Decay Regularization. 2019.
arXiv: 1711.05101 [cs.LG].

[23] Preetum Nakkiran et al. Deep Double Descent: Where Bigger Models and More Data
Hurt. 2019. arXiv: 1912.02292 [cs.LG].

[24] Alex Nichol and Prafulla Dhariwal. Improved Denoising Diffusion Probabilistic Models.
2021. arXiv: 2102.09672 [cs.LG].

[25] Aaron van den Oord, Nal Kalchbrenner, and Koray Kavukcuoglu. Pixel Recurrent
Neural Networks. 2016. arXiv: 1601.06759 [cs.CV].

[26] Prajit Ramachandran, Barret Zoph, and Quoc V. Le. Searching for Activation Func-
tions. 2017. arXiv: 1710.05941 [cs.NE].

[27] Danilo Jimenez Rezende and Shakir Mohamed. Variational Inference with Normalizing
Flows. 2016. arXiv: 1505.05770 [stat.ML].

5

https://arxiv.org/abs/1607.06450
https://arxiv.org/abs/2009.00713
https://colab.research.google.com/drive/1IJkrrV-D7boSCLVKhi7t5docRYqORtm3
https://colab.research.google.com/drive/1IJkrrV-D7boSCLVKhi7t5docRYqORtm3
https://github.com/crowsonkb/v-diffusion-pytorch/blob/master/diffusion/utils.py
https://github.com/crowsonkb/v-diffusion-pytorch/blob/master/diffusion/utils.py
https://arxiv.org/abs/1909.13719
https://arxiv.org/abs/1612.08083
https://arxiv.org/abs/1807.03819
https://arxiv.org/abs/1903.08689
https://arxiv.org/abs/1406.2661
https://arxiv.org/abs/1406.2661
https://arxiv.org/abs/1606.08415
https://arxiv.org/abs/2006.11239
https://arxiv.org/abs/2207.12598
https://arxiv.org/abs/1905.02244
https://arxiv.org/abs/1704.04861
https://arxiv.org/abs/1602.07360
https://paperswithcode.com/sota/image-generation-on-imagenet-64x64
https://arxiv.org/abs/1502.03167
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/2303.00848
https://arxiv.org/abs/2107.00630
https://arxiv.org/abs/2107.00630
https://arxiv.org/abs/1909.11942
https://arxiv.org/abs/1711.05101
https://arxiv.org/abs/1912.02292
https://arxiv.org/abs/2102.09672
https://arxiv.org/abs/1601.06759
https://arxiv.org/abs/1710.05941
https://arxiv.org/abs/1505.05770


[28] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-Net: Convolutional Networks
for Biomedical Image Segmentation. 2015. arXiv: 1505.04597 [cs.CV].

[29] Chitwan Saharia et al. Photorealistic Text-to-Image Diffusion Models with Deep Lan-
guage Understanding. 2022. arXiv: 2205.11487 [cs.CV].

[30] Tim Salimans and Jonathan Ho. Progressive Distillation for Fast Sampling of Diffusion
Models. 2022. arXiv: 2202.00512 [cs.LG].

[31] Mark Sandler et al. MobileNetV2: Inverted Residuals and Linear Bottlenecks. 2019.
arXiv: 1801.04381 [cs.CV].

[32] Noam Shazeer. GLU Variants Improve Transformer. 2020. arXiv: 2002 . 05202
[cs.LG].

[33] Leslie N. Smith. A disciplined approach to neural network hyper-parameters: Part 1
– learning rate, batch size, momentum, and weight decay. 2018. arXiv: 1803.09820
[cs.LG].

[34] Leslie N. Smith and Nicholay Topin. Super-Convergence: Very Fast Training of Neural
Networks Using Large Learning Rates. 2018. arXiv: 1708.07120 [cs.LG].

[35] Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising Diffusion Implicit Mod-
els. 2022. arXiv: 2010.02502 [cs.LG].

[36] Yang Song et al. Score-Based Generative Modeling through Stochastic Differential
Equations. 2021. arXiv: 2011.13456 [cs.LG].

[37] Yuxuan Song et al. Discriminator Contrastive Divergence: Semi-Amortized Genera-
tive Modeling by Exploring Energy of the Discriminator. 2020. arXiv: 2004.01704
[cs.LG].

[38] Nitish Srivastava et al. “Dropout: A Simple Way to Prevent Neural Networks from
Overfitting”. In: Journal of Machine Learning Research 15.56 (2014), pp. 1929–1958.
url: https://www.cs.toronto.edu/~rsalakhu/papers/srivastava14a.pdf.

[39] Xander Steenbrugge. SLERP defintion. Online. 2024. url: https://gist.github.
com/karpathy/00103b0037c5aaea32fe1da1af553355.

[40] Hugo Touvron et al. LLaMA: Open and Efficient Foundation Language Models. 2023.
arXiv: 2302.13971 [cs.CL].

[41] Vincent Vanhoucke. “Learning Visual Representations at Scale”. In: International
Conference on Learning Representations (ICLR). 2014.

[42] Ashish Vaswani et al. Attention Is All You Need. 2023. arXiv: 1706.03762 [cs.CL].

[43] Zhaoyuan Yang et al. IMPUS: Image Morphing with Perceptually-Uniform Sampling
Using Diffusion Models. 2023. arXiv: 2311.06792 [cs.CV].

[44] Biao Zhang and Rico Sennrich. Root Mean Square Layer Normalization. 2019. arXiv:
1910.07467 [cs.LG].

6

https://arxiv.org/abs/1505.04597
https://arxiv.org/abs/2205.11487
https://arxiv.org/abs/2202.00512
https://arxiv.org/abs/1801.04381
https://arxiv.org/abs/2002.05202
https://arxiv.org/abs/2002.05202
https://arxiv.org/abs/1803.09820
https://arxiv.org/abs/1803.09820
https://arxiv.org/abs/1708.07120
https://arxiv.org/abs/2010.02502
https://arxiv.org/abs/2011.13456
https://arxiv.org/abs/2004.01704
https://arxiv.org/abs/2004.01704
https://www.cs.toronto.edu/~rsalakhu/papers/srivastava14a.pdf
https://gist.github.com/karpathy/00103b0037c5aaea32fe1da1af553355
https://gist.github.com/karpathy/00103b0037c5aaea32fe1da1af553355
https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/2311.06792
https://arxiv.org/abs/1910.07467

	The Discriminative Model
	The Discriminative Modelling Problem
	Methodology
	Model Architecture
	Discussion

	Results
	Limitations

	The Generative Model
	Strategy
	Methodology
	Discussion
	Results
	Limitations


