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Abstract

Given the aim of solving the OpenAI Gym BipedalWalker-v3 environments
in as few interactions as possible, this paper presents a method based on
the Truncated Quantile Critics extension of the Soft Actor-Critic algorithm.
The final implementation converges to a score over 300 in under 50 episodes
for the easy environment, and is able to intermittently achieve similar scores
on the hardcore environment – although it is unable to converge within the
1000 episode limit.

1 Methodology

We consider a (finite horizon) Markov decision process (MDP), defined by the tuple
(S,A,P, R, γ), where S and A represent the state and action spaces, P : S×A×S → [0,∞)
represents the unknown state transition density, R is a random variable reward function,
and γ ∈ [0, 1) is the discount factor. We propose a solution based on the off-policy Soft
Actor-Critic (SAC) algorithm [7, 8, 9], extended with the overestimation bias reduction
techniques from the Truncated Quantile Critics (TQC) approach [10].

The learning process of the agent – which involves the policy (πϕ), critic (Zψn), and target
(Zψ̄n) networks, as well as the entropy temperature coefficient α – is governed by five key
equations, which are computed in order:

1. Entropy Temperature Loss (Lα):

Lα = − (log(α) · (log πϕ(a′t | st) +HT )) (1)

We optimise the entropy temperature coefficient α to bring the stochastic estimate of the
policy entropy log πϕ(a

′
t | st) closer to the target entropy HT , which is set heuristically

to the negative dimensionality of the action space A.

2. Target Value (y(st, at)):

y(st, at) = rt + γ
[
zψ̄n(st+1, a

′
t+1)− α log πϕ(a

′
t+1 | st+1)

]
(2)

TQC computes the temporal difference targets for the smallest kN elements of the quan-
tile values of the next state and action, zψ̄n(st+1, a

′
t+1), which is how the overestimation

bias reduction is achieved.

3. Quantile Critic Loss (LZψn ):

LZψn = HuberQuantileLoss(zψn(st, at), y(st, at)) (3)

The critic loss is defined similarly to standard methods, as the difference between the
predicted and target values, but differing in the use of quantile values rather than mean
estimates.
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4. Policy Loss (Lπϕ):

Lπϕ = α log πϕ(st | a′t)− zψn(st, a
′
t) (4)

Similarly to the critic loss, the policy loss takes a distributional approach [3, 6], using
quantile-based estimates rather than a single Q-value as in standard SAC.

5. Target Network Update:

ψ̄n = (1− τ)ψ̄n + τψn (5)

The target network is updated using a Polyak update based on the hyperparameter τ .

The derivation process of the constituent terms of these equations is depicted in Figure 1
(authors’ own). We refer the reader to the TQC paper for further details – whilst noting
that, for the sake of clarity, our notation differs slightly from theirs.

Figure 1: Top: A diagram representing the information exchanged between the agent and
the environment during a single timestep. The agent makes action at given state st−1,
the environment then returns the appropriate next state, reward, and ‘done’ information
(st+1, rt, dt). Bottom: A diagram depicting the computations that occur within the agent
during a single training step. These values are used to optimise the weights of the policy
(πϕ), critic (Zψn), and target (Zψ̄n) networks via equations 1-5.
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2 Convergence Results

Figure 2 presents the convergence results of our final implementation, referred to as TQC+,
on both the easy and hardcore OpenAI Gym BipedalWalker-v3 environments [4]. In the
spirit of demonstrating robustness, we use the same model configuration and hyperparam-
eters for both environments.

Figure 2: Left: Reward plot for the easy environment. The agent reaches a score of 300 in 49
episodes and a maximum reward of 336. Right: Reward plot for the hardcore environment.
The agent reaches a maximum score of 313 but does not converge within 1000 episodes. In
both plots, the line represents the average reward across the last 10 runs, whilst the shading
indicates the standard deviation over the same period.

3 Experiments

Figure 3 presents the performance of our solution at various stages of its evolution. We
began with a purely SAC approach, which we then extended into a TQC implementation.
Our final implementation extends this slightly further and is a byproduct of extensive ex-
perimentation, as summarized in Table 1.

Figure 3: Left: Reward plot for the easy environment. Right: Reward plot for the hardcore
environment. For both plots, the original SAC implementation is in yellow, TQC is in pink,
and the final implementation is in blue. The plots reveal that each stage of evolution
outperforms the last on both environments – given a metric of cumulative reward (AUC).
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Technique Description Adopted?

Orthogonal Initialisation Rather than Kaiming ×
Prioritized Experience Replay [13] ×
Emphasizing Recent Experience [14] ×
State Dependent Exploration [10] ×

LR Scheduler To expedite convergence ×
Layer Norm To stabilize training [2] ×

Fixed Exploration Schedule [8] ×
Sample Multiple Reuse [12] ×

Increased Update-Data Ratio [5] ✓
Variable Batch Size 32 → 256 to balance robustness

and convergence
✓

Uniform Sampling for n Steps Diverse initial population in replay
buffer

✓

Bayesian Hyperparameter
Optimization

[1] ✓

Table 1: A summary of the additional techniques experimented with on top of the base
TQC architecture, four of which are included within the final (TQC+) implementation.

4 Discussion

The code for our final implementation is adapted from the official TQC implementation [11].
This official implementation is not compatible with modern versions of PyTorch, so some
(non-trivial) rearrangement of the loss computations was required (Section 1).

Beyond this change, and as summarized in Table 1, our implementation makes some subtle
tweaks to the standard TQC algorithm for slightly improved performance (Section 3). Most
of these are standard, hence, we refer the reader to the associated references for more
information. One non-standard choice is to increase the batch size during training. We do
this to address the lack of convergence of the original implementation, which only performs
gradient updates after batch size environment steps, which means that no updates are
performed during the episodes where the agent dies before this threshold has been met.
Given that large batch sizes are beneficial for training stability we increase the batch size
through training to balance these convergence and robustness considerations.

5 Limitations

The performance of our implementation is highly sensitive to the choice of hyperparame-
ters. Beyond being a fundamental limitation from a methodological perspective, this also
has negative repercussions from an experimental perspective. Concretely, intuitively promis-
ing model enhancements would result in a decrease in model performance. It is plausible
that these drops in performance are not caused by the lack of efficacy of the enhancements
themselves, but rather the fact that they knock the model out of its local minima within the
optimization landscape. Thus, lacking the computational resources to perform hyperparam-
eter optimization for every model variant, a number of promising methods were discarded
despite their potential to unlock better performance overall.

Another, somewhat related, limitation of our approach is that we present an architecture
whose hyperparameters have been optimized for a single random seed, rather than an average
of many. Consequently, we can make no guarantees about the general performance of the
model. Nevertheless, we worked to mitigate this limitation by conducting only a light
hyperparameter search with 20 trials, and used the same hyperparameters on both the easy
and hardcore environments. Given this context, if one were to seek to achieve convergence
on the hardcore environment within 1000 episodes, the most promising next step would be
to perform a more thorough hyperparameter search, bespoke to the hardcore environment.
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